We present the calibration of the \textit{Nuclear Spectroscopic Telescope Array} (\nustar) X-ray satellite. We used the Crab as the primary effective area calibrator and constructed a piece-wise linear spline function to modify the vignetting response. The achieved residuals for all off-axis angles and energies, compared to the assumed spectrum, are typically better than $\pm 2$\% up to 40\,keV and 5--10\,\% above due to limited counting statistics. An empirical adjustment to the theoretical 2D point spread function (PSF) was found using several strong point sources, and no increase of the PSF half power diameter (HPD) has been observed since the beginning of the mission. We report on the detector gain calibration, good to 60\,eV for all grades, and discuss the timing capabilities of the observatory, which has an absolute timing of $\pm$ 3\,ms. Finally we present cross-calibration results from two campaigns between all the major concurrent X-ray observatories (\textit{Chandra}, \textit{Swift}, \textit{Suzaku} and \textit{XMM-Newton}), conducted in 2012 and 2013 on the sources 3C\,273 and PKS\,2155-304, and show that the differences in measured flux is within $\sim$10\% for all instruments with respect to \nustar.
↧