Quantcast
Channel: Instrumentation and Methods – Vox Charta
Viewing all articles
Browse latest Browse all 2573

Improved Performances in Subsonic Flows of an SPH Scheme with Gradients Estimated using an Integral Approach

$
0
0

In this paper we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular we consider the Gresho-Chan vortex problem, the growth of Kelvin-Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disc problem. We compare simulation results for the different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral properties of the particle distribution, in a way similar to what was done in other works. We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in all of the tests considered. In fact, in terms of accuracy we find good agreement between the simulation results of the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that the proposed method can be successfully applied for many astrophysical problems in which the presence of subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes with other numerical methods.


Viewing all articles
Browse latest Browse all 2573

Trending Articles