Testing the standard Shakura-Sunyaev model of accretion is a challenging task because the central region of quasars where accretion takes place is unresolved with telescopes. The analysis of microlensing in gravitationally lensed quasars is one of the few techniques which can test this model, yielding to the measurement of the size and of the temperature profile of the accretion disc. We present spectroscopic observations of the gravitationally lensed broad absorption line quasar H1413+117, which reveal partial microlensing of the continuum emission that appears to originate from two separated regions, a microlensed region corresponding the compact accretion disc, and a non-microlensed region, more extended and contributing to at least 30\% of the total UV-continuum flux. Because this extended continuum is occulted by the broad absorption line clouds, it is not associated to the host galaxy, but rather to light scattered in the neighbourhood of the central engine. We measure the amplitude of microlensing of the compact continuum over the rest-frame wavelength range 1000-7000 \AA. Following a Bayesian scheme, we confront our measurements to microlensing simulations of an accretion disc with a temperature varying as $T \propto R^{-1/\nu}$. We find a most likely source half-light radius of $R_{1/2} = 0.61 \times 10^{16}$ cm (i.e. 0.002 pc) at 0.18 um, and a most likely index of $\nu=0.4$. The standard disc ($\nu=4/3$) model is not ruled out by our data, and found within the 95\% confidence interval associated to our measurements. We demonstrate that for H1413+117, the existence of an extended continuum in addition to the disc emission has only a small impact on the inferred disc parameters, and is unlikely to solve the tension between the microlensing source size and standard disc sizes as previously reported in the literature.
↧