The ultra high energy cosmic neutrinos are powerful astrophysical probes for both astrophysical mechanisms of particle acceleration and fundamental interactions. They open a window into the very distant and high-energy Universe that is difficult to access by any human means and devices. The possibility of detecting them in large exposure space-based apparatus, like JEM-EUSO, is an experimental challenge. In this paper we present an estimation of the feasibility of detection of UHE tau neutrino by the JEM-EUSO telescope. The interactions of tau-neutrino in sea water and Earth's crust have been investigated. The estimation of the propagation length and energy of the outgoing tau-lepton shows that if its decay occurs in the atmosphere close enough to the Earth's surface, e.g. below $\sim$ $5 km$ altitude, the cascade is intensive enough and the generated light can be detected from space. We have evaluated the geometrical aperture of the JEM-EUSO detector for the Earth-skimming (horizontal and upward-going) tau-neutrinos by making specific modifications to the standard CORSIKA code and developing an interface to the existing ESAF (EUSO Simulation and Analysis Framework) software.
↧